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During photoelectron spectroscopy (PES) experiments aimed at
understanding the semiconductor-to-metal transition in tin clusters,

the spectrum of Sa~ was observed to be remarkably simple and
totally different from the corresponding e cluster, suggesting
that Sn,~ is a unique and highly symmetric cluster. Structural
optimization starting from an icosahedrhj Cluster led to a slightly
distorted cage witlCs, symmetry. However, adding an electron to
Sy, resulted in a stable closed-shigh-Sn 2~ cluster, which was
synthesized in the form of K$sr (KT[Sny227]) with a similar PES
spectrum as Sa. Thelp,—Sn 2~ cage is shown to be bonded by
four delocalized radialr bonds and nine delocalized on-sphere
tangentialo bonds from the 5p orbitals of the Sn atoms, whereas
the 52 electrons remain largely localized and nonbonding. The
bonding pattern in S~ is similar to the well-known BH;,2~
cage, with the twelve Bslocalized electron pairs replacing the
twelve B—H bonds. The Sp?~ cage has a diameter of 6.1 A and
can host most transition metal atoms in the periodic table.

In an effort to elucidate the semiconductor-to-metal transition
as a function of size in tin clusters, we recently re-examined the
PES of size-selected gnclusters with high photon energies (up
to 6.424 eV or 193 nm) and under well-controlled experimental
conditions. In the size range af < 20, we indeed observed that
the PES spectra of gnare similar to those of the corresponding
Ge, with the exception of Sp~ (Figure S1). Whereas the
spectrum of Gg~ is rather congested with numerous poorly
resolved features, that of §n is remarkably simple and well-
structured (Figure 1a). Four bands were resolved in the binding
energy range from 3 to 4 eV, followed by a large gap and two
well-resolved bands around 5 eV. The lowest energy band yielded
an adiabatic detachment energy, that is, the electron affinity of
neutral Sk, to be 3.23+ 0.05 eV and a vertical detachment energy
(VDE) of 3.34 £ 0.03 eV. Although low-symmetry structures
similar to Gea, have been proposed for Snthe relatively simple
and characteristic PES spectrum of;Snmmediately suggested

The PES apparatus, featuring a laser vaporization supersonicthat it should possess a high-symmetry structure different from that
cluster beam source and a magnetic bottle electron analyzer, hasf Ge .

been described in detail previoushA disk of pure tin was used

In pondering the possible high-symmetry structures fof; Sn

as the laser vaporization target with a helium carrier gas. Negatively we started from the highest symmetry possible for a twelve-atom

charged tin clusters (1) were extracted from the cluster beam

cluster, the icosahedral cage (for computational details, see Sup-

and were mass analyzed in a time-of-flight mass spectrometer. Theporting Information). However, the JahiTeller effect led to a
cluster of interest was selected and then decelerated before beinglightly lower symmetryCs, (2A;) species (Figure 2a), which is

photodetached by a laser beam (193 nm from an excimer laser orgnly slightly distorted from thé, structure, mainly by the depression

266 and 355 nm from a Nd:YAG laser). Photoelectrons were
analyzed by the magnetic bottle time-of-flight analyzer and were
calibrated by the known spectra of Cand Au". The PES apparatus
had an electron energy resolution AE/E ~ 2.5%, that is,~25
meV for 1 eV electrons.

Different from its lighter congeners, Si and Ge which are
semiconductors, the normal allotrope of tin under ambient condi-
tions (3-Sn) is a metal with a body-centered tetragonal lattice, but
it also has a small band gap semiconducting phassn() with a
diamond lattice similar to Si and Ge that is stable at low
temperatures. Prior experimentdi” and theoreticdi!! studies

of one apex atom. The computed first VDE (3.27 eV) of @
Sniz~ is in excellent agreement with the experimental value of 3.34
eV. By adding one electron to $n, we found that the resulting
Sn*~ species is a highly stablg cage with a closed electron shell
(Figure 2b and Figure S2j.Several other low-symmetry structures,
including those suggested for Gehave also been calculated for
Sni2~, but they are all much higher in energy (Figure S2). We
were able to make S~ in the form of KSny~ (KT[Sni27])
experimentally by laser vaporization of a tin target containig%

K. The photoelectron spectrum of Kgn (Figure 1b) is very similar

to that of Si,~, suggesting that the $A~ motif is not distorted

suggest that small tin clusters possess similar structures to those Obreatly due to the presence of'KThe ADE and VDE for the

Si and Ge. Small tin clusters were observed to exhibit melting
temperatures exceeding that of the btitlgnsistent with the notion

that small tin clusters have similar bonding configurations as those o g+
of the semiconductor Si and Ge clusters. Previous PES experi-

mentd2-14 also suggested that the spectra of small-Srusters
are similar to those of the corresponding,Gelusters. However,

ground-state transition were measured as 29905 and 3.08
0.03 eV, respectively, for KSg. Our calculations showed that
counterion is outside the $A~ cage with aCz, (*Aj)
symmetry (Figure 2c). Indeed, only relatively small structural
perturbations were observed in the;8n cage as a result of the
K* coordination. The isomer with Kinside the Sp?~ cage is

these PES experiments were all done at low photon energies andy, ,ch higher in energy by 3.1 eV because of the large size of the

under relatively low resolution.
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K+ ion, which expands the cage diameter from 6.07 A (Figure 2b)
to ~6.45 A. We also calculated K coordinated to the two low-
lying isomers of Spp~. We found they are both higher in energy
and yield VDEs smaller than the experiment (Table S1). Only the

10.1021/ja062052f CCC: $33.50 © 2006 American Chemical Society
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(a) | 12, (©) oo or counterions. More excitingly, the A~ cage has a diameter of
Snyy I b o 0 ~6.1 A, only slightly smaller than that of & and can host an
N 'f'.I A 09 lm-cff:':: ::; atom inside much like the endohedral fullerenes. Indeed, theoretical
[ _ln : calculations have shown that Cd@gis a stablel, cagé?, and
Y R Mjl.) '.\'hl,'i 3os several endohedral Rxlusters, such as AI@RY and Pt@Ph?,
A N T 3 have been synthesizé424 A recent report revealed stable €u
(b) \2 83 Sn cluster compositions from high-temperature annealing and
KSnyo X “ suggested coreshell-type structure® The stability of the stan-
I"u' |I cﬁ | o o naspherene and its large internal volume suggest that Smay
|' L -wn,lllw @ trap many different types of atoms to form endohedral stannas-
ey VI 03 = ) pherenes.
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